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1 Service de Physique de l’État Condensé, CEA Saclay, 91191 Gif-sur-Yvette cedex, France
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Abstract
We investigate the distribution of the time spent by a random walker to the
right of a boundary moving with constant velocity v. For the continuous-time
problem (Brownian motion), we provide a simple alternative proof of Newman’s
recent result (Newman T J 2001 J. Phys. A: Math. Gen. 34 L89) using a method
developed by Kac. We then discuss the same problem for the case of a random
walk in discrete time with an arbitrary distribution of steps, taking advantage
of the general set of results of Sparre Andersen. For the binomial random walk
we analyse the corrections to the continuum limit on the example of the mean
occupation time. The case of Cauchy-distributed steps is also studied.

PACS numbers: 02.50.Ey, 02.50.Ga, 05.40.+j

1. Introduction

Consider a Brownian particle, starting from the origin, whose position xt satisfies the Langevin
equation

dxt

dt
= ηt

where ηt is Gaussian white noise, such that 〈ηt 〉 = 0 and 〈ηtηt ′ 〉 = 2D δ(t − t ′).
In a recent paper [1], Newman considered the following question: what is the distribution

of the length of time spent by the particle to the right of a boundary moving with constant
velocity v? This quantity, denoted by T +

t , is known as the occupation time of the half-line
located to the right of the boundary. It reads

T +
t =

∫ t

0
dt ′ It ′ It ′ = �(xt ′ − vt ′)
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where �(x) is the Heaviside function. The indicator random variable It is therefore equal to
unity if xt > vt , and zero otherwise. Similarly, the occupation time to the left of the moving
boundary is denoted by T −

t , such that T +
t + T −

t = t .
A number of past studies as well as more recent ones have been devoted to the statistics of

the occupation time of stochastic processes, either in probability theory [2–5], or in statistical
physics [6–15] in the context of persistence.

A derivation of the probability density of T +
t , fT +

t
(t, τ ) = dP(T +

t < τ)/dτ , is given in [1],
with the result

fT +
t
(t, τ ) = F +(τ )F−(t − τ) (1)

where

F±(τ ) = 1√
πτ

exp

(
−v2τ

4D

)
∓ v

2
√
D

erfc

(
±v

2

√
τ

D

)
(2)

and erfc is the complementary error function.
In particular, in the case of a static boundary (v = 0), we have

fT +
t
(t, τ ) = 1

π

1√
τ(t − τ)

(3)

hence the fraction of time T +
t /t spent by the Brownian particle to the right of the origin admits

a limiting distribution as t → ∞, which reads

lim
t→∞ fT +

t /t (x) = 1

π
√
x(1 − x)

(0 < x < 1). (4)

The arcsine law [2, 16] is thus recovered.
The aim of this paper is to complement Newman’s work in two directions.
Firstly, we give an alternative, simpler derivation of equations (1), (2), using a method

originally developed by Kac [3].
Secondly, we discuss the corresponding problem for a sum of random variables, i.e. for a

random walk in discrete time, with an arbitrary distribution of steps, either narrow or broad.
The general set of results of Sparre Andersen [16, 17] is the starting point of this analysis. A
factorization property of the distribution of the occupation time similar to (1) holds, the role of
F +(τ ) being played by the quantity F +

k , which is simply the survival probability of the walk in
the presence of the boundary. We investigate two examples in more detail. For the binomial
random walk, for which a detailed study of F +

k can be found in [18], we analyse the corrections
to the continuum limit on the example of the mean occupation time; for a Cauchy distribution
of steps, we determine the probability distribution of the occupation time.

2. Brownian motion

The problem of a particle executing symmetric Brownian motion in the presence of a boundary
moving with constant velocity v is equivalent to that of biased Brownian motion with velocity
−v in the presence of a fixed boundary, located at the origin. Consider the probability for this
biased Brownian walk to be at position x at time t , and to have spent a length of time equal
to τ to the right of the origin. The joint probability density of the event (xt = x, T +

t = τ ) is
denoted by p(t, τ, x). We then have

fT +
t
(t, τ ) =

∫ ∞

−∞
dx p(t, τ, x). (5)
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The method of Kac4 consists in writing a master equation for p(t, τ, x). It is an easy matter
to realize that the latter reads, in the present case,

∂p

∂t
+ �(x)

∂p

∂τ
= D

∂2p

∂x2
+ v

∂p

∂x
(6)

with initial condition p(0, τ, x) = δ(x) δ(τ ). In Laplace space, setting

p̂(s, u, x) =L
t,τ

p(t, τ, x)

equation (6) yields

(s + u�(x)) p̂ − D
∂2p̂

∂x2
− v

∂p̂

∂x
= δ(x). (7)

This inhomogeneous differential equation is easily solved. By requiring p̂(s, u, x) to vanish
at infinity (x → ±∞), we have

p̂(s, u, x) = A(s, u) ×




exp
[
−
(
v +

√
v2 + 4D(s + u)

) x

2D

]
(x � 0)

exp
[(

−v +
√
v2 + 4Ds

) x

2D

]
(x � 0).

The amplitude A(s, u) is determined by the right-hand side of (7), yielding the condition

∂p̂(s, u, 0+)

∂x
− ∂p̂(s, u, 0−)

∂x
= − 1

D

hence

A(s, u) =
√
v2 + 4D(s + u) −

√
v2 + 4Ds

2Du
.

Finally equation (5) yields

f̂T +
t
(s, u) =L

t

〈
e−uT +

t

〉 = ∫ ∞

−∞
dx p̂(s, u, x) = F̂ +(s + u)F̂−(s) (8)

with

F̂±(u) = 2
√
D√

v2 + 4Du ± v
. (9)

These functions are precisely the Laplace transforms with respect to τ of F±(τ ) given in
equation (2). An inverse Laplace transformation finally leads to the result (1).

Let us now comment on the form of the solution (1). A first comment concerns symmetry.
It is clear that, for a given velocity v, T +

t (v) has the same distribution as T −
t (−v). Therefore

fT +
t (−v)(t, τ ) = fT −

t (v)(t, τ ) = fT +
t (v)(t, t − τ).

This requirement is satisfied by the solution (1), since changing v in −v changes F±(τ ) into
F∓(τ ), according to (2), or equivalently changes F̂±(u) into F̂∓(u), according to (9). A
second comment is on normalization. Integrating equation (1) upon τ ∈ [0, t] yields

1 = P(T +
t < t) =

∫ t

0
dτ fT +

t
(t, τ ) = F +(t) ∗ F−(t)

the star in the right-hand side denoting a convolution product. Hence in Laplace space the
equality F̂ +(s)F̂−(s) = 1/s should hold. This is indeed the case, as can be seen from (9).

4 This method has recently been applied to the investigation of the distribution of the occupation time of subordinated
Brownian motion [13] (see also [14]).
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For v = 0, the distribution of the occupation time is given by (3). The first correction to
this behaviour for small v is given by

fT +
t
(t, τ ) = 1

π

1√
τ(t − τ)

+
v

2
√
πD

(
1√
τ

− 1√
t − τ

)
+ · · · .

As a consequence,

〈
T +
t

〉 = t

2

(
1 − 2v

3

√
t

πD
+ · · ·

)
.

This expansion, valid for small v, is singular at long times. Hence the two limits v → 0 and
t → ∞ do not commute, showing that the presence of any bias v �= 0 is relevant in the long-
time regime. There is actually a non-trivial limiting distribution for T +

t as t → ∞ if v > 0 (and,
by symmetry, for T −

t if v < 0). We have indeed limt→∞ F−(t) = lims→0 sF̂−(s) = v/
√
D,

so that, by (1),

fT +(τ ) = v√
D

F +(τ ) (10)

with the notation T + = limt→∞ T +
t . Using the asymptotic expansion

erfc(x) = e−x2

x
√
π

(
1 − 1

2x2
+ · · ·

)
we see that the distribution (10) falls off exponentially for large τ , as

fT +(τ ) ≈ 2

v

√
D

πτ 3
exp

(
−v2τ

4D

)

so that all the moments
〈
(T +)n

〉
are finite. The latter can be computed by noting that

f̂T +(u) = v√
D

F̂ +(u)

which, expanded around u = 0, leads to〈
(T +)n

〉 = (2n)!

(n + 1)!

(
D

v2

)n

(n � 1). (11)

3. Random walk in discrete time

Consider a discrete random walk defined by a sum of independent, identically distributed
random variables:

xn =
n∑

i=1

ηi

with an arbitrary distribution of the steps ηi (either discrete or continuous, narrow or broad).
For this random walk, the occupation time to the right of the boundary moving with velocity
v is defined as

T +
n =

n∑
m=1

Im Im = �(xm − vm)

hence the indicator random variable Im = 1 if xm > vm, or 0 otherwise. The occupation time
T −
n to the left of the boundary is defined likewise, and such that T +

n + T −
n = n. As above, we

note the equivalence of the problem thus stated with that of the occupation time of a biased
random walk with steps ηi − v in the presence of a fixed boundary, located at the origin.
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For sums of independent random variables, a result due to Sparre Andersen [16, 17]
expresses the probability distribution of T +

n as the product

P(T +
n = k) = P(T +

k = k)P(T −
n−k = n − k). (12)

In this equation, P(T +
k = k), hereafter denoted by F +

k , is the probability that the walk remains
to the right of the boundary up to time k, or

F +
k = P(T +

k = k) = 〈
I1I2 . . . Ik

〉
.

Similarly,

F−
k = P(T −

k = k) = 〈(
1 − I1

)(
1 − I2

)
. . .
(
1 − Ik

)〉
is the probability that the random walker remains to the left of the boundary up to time k. In
other words, the quantities F±

k are survival probabilities of the walk in the presence of the
boundary, up to time k [6–9, 18, 19]. For instance,

F +
k = P(xm > vm for 1 � m � k

)
.

The generating function of the F +
n is related to the generating function of the one-time

probabilities
〈
In
〉 = P(xn > vn) by [16, 17]
∞∑
n=0

F +
n z

n = exp

( ∞∑
n=1

zn

n

〈
In
〉)

. (13)

Equation (12) is the discrete counterpart of equation (1). Together with (13), it provides the
answer to the question posed (in terms of the one-time quantities

〈
In
〉
).

We now illustrate the above formalism by two examples. First, for a narrow distribution
of steps ηi , we determine the continuum limit of equations (12) and (13), thus recovering
the results (1) and (2) obtained for Brownian motion. For the binomial random walk, we
investigate the corrections to the continuum limit on the example of the mean occupation time.
Then, for a Cauchy distribution of steps, we determine the distribution of the occupation time
P(T +

n = k) explicitly.
Consider a narrow distribution of steps, with

〈
η
〉 = 0 and

〈
η2
〉 = σ 2. The continuum limit

is defined as n → ∞, v → 0, with v
√
n/σ = ξ fixed. The central limit theorem yields

〈
In
〉 = P(xn > vn) = P

(
xn

σ
√
n

> ξ

)
≈ 1√

2π

∫ ξ

−∞
du e−u2/2 = 1

2

(
1 − erf

ξ√
2

)
. (14)

Let us analyse equation (13) in the same limit. Setting z = e−u, to leading order as u → 0,
identifying generating series with Laplace transforms, we obtain the following estimates:

∞∑
n=0

F +
n z

n ≈ F̂ +(u)

∞∑
n=1

zn

n
= − ln(1 − z) ≈ − ln u

∞∑
n=1

zn

n
erf

v
√
n

σ
√

2
≈
∫ ∞

0

dt

t
e−ut erf

v
√
t

σ
√

2
= 2 ln

(
v

σ
√

2u
+

√
v2

2σ 2u
+ 1

)
.

Hence finally

F̂ +(u) = σ
√

2√
v2 + 2σ 2u + v

. (15)

With the identification σ 2 = 2D, the result (9) is recovered.
For the binomial random walk, the survival probability F +

n is a highly non-trivial function
of the velocity v, depending on whether v is rational or irrational, because of the underlying
lattice structure [18]. In particular, the limit survival probability F + = limn→∞ F +

n , which
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Figure 1. Plot of the difference between the mean
occupation time 〈T +〉 for the symmetric binomial random
walk and its continuum-limit expression (18), against
1/v. Thick curve: sum of last two terms of equation (17).

is non-zero for v < 0, is discontinuous at any rational value of v. The corresponding
discontinuities are algebraic numbers which can be determined explicitly [18]. In the
continuum limit (v → 0−), F + is simply given by |v|√2/σ .

In order to better understand the nature of the corrections to the continuum limit, we
consider the simple case of the asymptotic mean occupation time

〈
T +
〉
. For the symmetric

binomial random walk, and for fixed v > 0, we have

〈
T +
〉 = ∞∑

n=1

〈
In
〉 = ∞∑

n=1

2−n
n∑

k=k0(v)

(
n

k

)
(16)

with k0(v) = Int(n(1 + v)/2) + 1, where Int(x) is the integer part of x, i.e. the largest integer
less than or equal to x. As shown in the appendix, the behaviour of this expression as v → 0
is given by 〈

T +
〉 = 1

2v2
+

A√
v

+
5

12
+ · · · (17)

with

A =
√

2

π
ζ

(
−1

2

)
= −0.165 869 209.

The first term in (17) corresponds to the continuum-limit result (see equation (11))〈
T +
〉
Brown = 1

2v2
(18)

because D = 1/2 for the binomial random walk. The second term in (17) is surprising in
several respects: it is of relative order v3/2, instead of the naturally expected v2, and the
corresponding amplitude A is transcendental.

Figure 1 shows a plot of the difference between the exact value of
〈
T +
〉
, obtained by

evaluating numerically (16), and its continuum-limit expression (18). The sum of the last two
terms in (17), shown as a thick curve, correctly describes the mean asymptotic behaviour of the
plotted quantity. Superimposed periodic oscillations, with period two, are also clearly visible.
Similar oscillations, due to the lattice underlying the discrete walk, are also encountered when
considering other quantities [18] (see especially figures 14 and 15 therein).

Consider finally the case where the steps have a Cauchy distribution

ρ(η) = 1

π(1 + η2)
.
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Because of the stability of the Cauchy law, the probability
〈
In
〉 = P(xn > vn) is independent

of n: 〈
In
〉 = P(xn > vn) = a(v) =

∫ ∞

v

du ρ(u) = 1

2
− 1

π
arctan v. (19)

Hereafter we denote this expression by a, for short. Using (13), we obtain
∞∑
n=0

F +
n z

n = (1 − z)−a

hence

F +
n = $(n + a)

n!$(a)
≈ n−θ(v)

$(a)
(n � 1)

with

θ(v) = 1 − a = 1

2
+

1

π
arctan v. (20)

The survival probability F +
n falls off as a power law, with a continuous family of persistence

exponents θ(v) [6–9, 19].
From equation (12), we obtain

P (T +
n = k

) = $(a + k)

k!$(a)

$(n + 1 − k − a)

(n − k)!$(1 − a)
=
(
n

k

)
B (a + k, 1 − a + n − k)

B (a, 1 − a)
(21)

where the beta function is defined as

B(a, b) =
∫ 1

0
du ua−1(1 − u)b−1 = $ (a) $ (b)

$ (a + b)
.

Defining the β density as

βa,b(x) = 1

B(a, b)
xa−1(1 − x)b−1 (0 < x < 1),

one can rewrite (21) as

P (T +
n = k

) =
∫ 1

0
du

(
n

k

)
uk (1 − u)n−k βa,1−a(u). (22)

In the continuum limit where n and k are simultaneously large, with a fixed ratio x = k/n,
the binomial distribution inside (22) converges to δ(u− x), so the limiting probability density
function of T +

n /n reads

lim
n→∞ fT +

n /n(x) = βa,1−a(x) = sin πa

π
xa−1(1 − x)−a. (23)

In particular, if v = 0, then a = 1/2, and one recovers the arcsine law (4).
To conclude, let us briefly consider the case of a moving boundary whose position obeys

an arbitrary power law: X(t) = w tν [18, 20, 21].
If the steps have a narrow distribution, the continuum description can again be used in the

regime of long times (t � 1) and weak bias (|w| � 1). A generalization of (14) shows that
the mean occupation time reads〈

T +
t

〉 = ∫ t

0
dt ′
〈
It ′
〉 = 1

2

∫ t

0
dt ′ erfc

(
w

σ
√

2
(t ′)ν−1/2

)
.

The case ν = 1/2 therefore demarcates between two regimes. For ν < 1/2, the bias w

is irrelevant, so
〈
T +
t

〉 ≈ t/2, and the arcsine law (4) still holds asymptotically. In contrast,
for ν > 1/2, any weak bias is relevant, so a non-trivial limiting law for the occupation time
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T + is expected (for w > 0), generalizing (10), with
〈
T +
〉 ∼ (σ/w)2/(2ν−1). In the marginal

situation of a parabolic boundary (ν = 1/2), there is a continuously varying persistence
exponent θ(w) [20, 21], and the fraction T +

t /t admits a non-trivial limit distribution, which
also continuously depends on w.

If the steps have a symmetric broad (Lévy) distribution, with tails falling off as ρ(η) ∼
|η|−µ−1, with 0 < µ < 2, the above discussion on the relevance of the bias w still applies, with
the marginal situation being ν = 1/µ. The case of Cauchy-distributed steps in the presence
of a ballistic boundary (µ = ν = 1) is an interesting example of this marginal situation,
where the dependence on the bias w = v of the persistence exponent (20) and of the limit
distribution (23) are known explicitly.

Appendix. Expansion for v → 0 of expression (16)

In this appendix we investigate the behaviour as v → 0 of expression (16) of the mean
occupation time

〈
T +
〉
, i.e.

〈
T +
〉 = ∞∑

n=1

〈
In
〉 = ∞∑

n=1

2−n
n∑

k=k0(v)

(
n

k

)
.

We set u = 1/v, and introduce the Laplace transform L(s) =L
u

〈
T +
〉
. The above expression

yields

L(s) = 1

s

∞∑
n=1

2−n
n∑

k=k0

(
n

k

)
exp

(
− sn

2k − n

)

with k0 = k0(0) = Int(n/2) + 1.
Introducing the contour-integral representation(

n

k

)
=
∮

dz

2π i

1

zk+1(1 − z)n−k+1

where the contour encircles the origin, and summing over k at fixed . = 2k−n � 1, we obtain

L(s) = e−s

s

∮
dz

2π i

∞∑
.=1

4

(2z).
(
4z(1 − z) − e−2s/.

)
hence, after some algebra,

L(s) = e−s

s

∞∑
.=1

(1 + W.)
−.

W.

= es

s

∞∑
.=1

(1 − W.)
.

W.

with W. = √
1 − e−2s/..

In the regime of interest (s → 0), we have

L(s) = L0(s) + L1(s) + · · ·
with

L0(s) = 1√
2s3

∞∑
.=1

√
. e−√

2s. L1(s) =
∞∑
.=1

(
1

2
√

2s.
− 1

6

)
e−√

2s.

and so on.
The leading series L0(s) has to be investigated in some detail, by means of its Mellin

transform M0(x), for which we obtain a closed-form expression:

M0(x) =
∫ ∞

0
ds sx−1 L0(s) = 22−x $(2x − 3) ζ(x − 2) (Re x > 3)
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where ζ is Riemann’s zeta function. The behaviour of the subleading series L1(s) can be
estimated to leading order, replacing the sum over . by an integral over

√
2s.. We thus obtain

L1(s) ≈ 1/(3s).
Inverting successively the Mellin and Laplace transforms, we obtain expression (17), i.e.〈

T +
〉 = 1

2v2
+

A√
v

+
5

12
+ · · ·

with

A =
√

2

π
ζ

(
−1

2

)
= −0.165 869 209

and where the dots represent a contribution going to zero as v → 0.
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